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Abstract-An analysis is presented of the initial buckling of rectangular plates which are orthotropic in plane
and in bending; the loading is either applied in two directions parallel to the plate edges, or is uniaxial with a
degree of restraint applied laterally in the plane of the plate. For long restrained plates it is shown that
buckling under load in one direction may actually be caused by the transverse load which is induced in the
other direction by restraining the plate Poisson's ratio effect. This may occur for values of the Poisson's ratio
conventionally associated with isotropic materials, only partial lateral restraint neeuing to be present.

NOTATION

a, b length and width of plate

~:i~:;n matrices of in plane and bending stilfnesses

D bending stiffness of an isotropic plate
E", E", G longitudinal, transverse and shear moduli of a ply of composite material

k load parameter when Ny acts as a constant preload-see equation (12)
I load parameter when loads vary proportionally-see equation (14)

m, n number of half-waves of w in x and y directions
M" My, M xy bending moments
N" Ny, N" middle-surface forces per unit width

N" Ny axial and transverse buckling loads of a rectangular plate-see equations (7). (10)
N~. N~ axial and transverse buckling loads of an infinite plate-see equations (8). (II)

N~ buckling load defined by equation (9)
v, w displacements in Y. z directions

x, y, z cartesian coordinates
a =alb is the plate aspect ratio
lJ arbitrary small constant

E" Ey, ')'xy in-plane strains
A = nalmb
~ Poisson's ratio

~12, ~21 in-plane Poisson's ratios of an orthotropic plate
l!J parameter governing degree of lateral restraint

J. INTRODUCTION

Recent interest in the use of fibre-reinforced composite materials in load-carrying applications
has seen an emphasis on application of the stronger and stiffer reinforcements which are
currently available. With the enhanced mechanical properties which have been demonstrated,
there has been extensive use of thin sections of such materials laminated into thin sheet form and
this, in turn, has led to an interest in the stability of laminated sheets under a variety of loadings. A
laminated composite sheet is conventionally produced by the combination of a number of thin
plies of unidirectionally reinforced material; the elastic response of such a laminate subjected to
an applied load is, in general, highly anisotropic and exhibits a coupling between the in-plane and
out-of-plane responses.

This paper considers the initial buckling of rectangular simply-supported plates subjected
either to a destabilising biaxial load system (N.. Ny), or to an axial load Nx with a degree oj
elastic lateral restraint applied to the sides of the plate. Attention is focussed on plates whose
properties, both in plane and in bending, are orthotropic; the analysis thus applies to a wide clas~

of laminated plate, as described above, or to homogeneous orthotropic plates in which the elastic
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properties do not vary through the plate thickness. It is well known in isotropic plates that when a
laterally restrained plate is compressed in the axial direction, a destabilising transverse load is
induced by the restraint; the plate instability is thus equivalent to that under biaxial loading where
a destabilising transverse load is applied in proportion to the axial load. The present paper shows
that for orthotropic plates whose elastic constants fall into certain ranges, the transverse load
induced by the lateral restraint may not only destabilise the plate, but that buckling may actually
be caused by this effect. It is not necessary for this lateral restraint to be completely rigid, and the
in-plane Poisson's ratios at which the phenomenon may occur are of the same magnitude as in
conventional isotropic materials.

The buckling of an infinitely long orthotropic plate is first considered. For a range of loads, the
axial load Nx does not interact at buckling with the transverse load Ny; it is thus shown, for an
elastically restrained plate, that the induced transverse load may cause buckling for a certain
range of elastic properties and of lateral restraint. It follows that in a finite plate the induced
transverse load may be the primary cause, although not the sole cause, of buckling; for plates of
sufficient length, a criterion is suggested which will allow the effect to be assessed for finite plates.

2. BASIC EQUATIONS AND INITIAL BUCKLING

The equations governing the stability under biaxial loading of rectangular orthotropic plates
having simply-supported edges have been given by Lekhnitskii [1]; Wittrick [2], in considering the
same and related problems, has drawn attention to the correlation which exists between the
buckling loads of orthotropic and isotropic plates for various edge conditions, including those of
simple support. Shulesko [3] has described a reduction method which gives a number of specific
solutions for the stability, under uniaxial and biaxial loading, of orthotropic plates whose sides
are subject to a variety of boundary conditions, including those of simple support. The present
paper considers the stability of both finite and infinite orthotropic plates. To account for the
effects of lateral restraint it is necessary to consider the elastic response in the plane of the plate,
in addition to that in bending. Refs. I and 2 consider only the stability of unrestrained plates; Ref.
3 covers the case where the plate sides are elastically restrained against rotation but in-plane
elastic restraint, of the present type, is not considered.

A plate is considered which is orthotropic in plane and in bending, in which the plate axes of
symmetry and the elastic axes of symmetry coincide. In general, when the plate is laminated from
a number of plies of unidirectionally reinforced material, the orthotropy in plane and in bending
will differ; with a coordinate system O(x, y, z) with stress resultants (Nx , Ny, Nxy ), strains (Ex, Ey,
'YXy), moments (M., My, Mxy ) and transverse displacement w, the stress-strain and
moment-curvature relationships are, respectively,

(
Nx ) (A II A12 0) (Ex )
Ny = A 12 A22 0 Ey ,
Nxy 0 0 A 33 'Yxy

(I)

All> A 12, A 22 , A 33 being the in-plane and D II , D 12 , Dn , D 33 the bending stiffnesses of the plate. It
is assumed that no coupling exists between in-plane and bending effects, so that a laminated
plate will have an appropriate lamination sequence through its thickness [4].

2.1 Biaxially loaded plates
The equation governing the transverse deflection of an orthotropic plate subjected to biaxial

load (N., Ny) is[l, 2]

(2)
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A rectangular plate, O:EO x :EO a, O:EO y :EO b, is considered whose sides are simply-supported; the
boundary conditions are thus

(x ~ 0, a),)
(y -0, b).

(3)

An additional boundary condition, of elastic lateral restraint at the sides y = 0, b, will be
introduced later and will be implemented by ensuring a suitable inter-relationship between (Nx ,

Ny).
If 'a buckling mode

. m1rX . n1rYw=sm--sm-
a b

(4)

is assumed, the boundary conditions (3) are satisfied automatically; substitution in equation (2)
then gives, at buckling,

where

, =~
J\ mb'

(5)

(6)

Equation (5) may be used in various forms to determine initial buckling under different
loading conditions. Under uniaxial load Nx alone, there is one half-wave across the plate width
and

(7)

with n =1 at buckling. The behaviour of an axially loaded orthotropic plate at buckling is well
known, successive segments of the buckling curve, given by (6) and (7), being determined by
m = 1,2,3 ... etc. as illustrated in Fig. 1 (curve corresponding to 1= 0); the properties of the
specific plate chosen for illustration in this paper, and used in preparing Fig. 1, are detailed in
Section 3 below. For a very long plate in which a 00+00 (a = alb is the plate aspect ratio), Atakes

H'.--,----,------,.-----.------,

,,0

O'S

L.0·I6

o 8

Fig. I. Variation with plateaspect ratio ofN. atbuckling for applied loads which vary proportionally.
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the value which minimises the expression on the right of (7), and the critical buckling load is

(8)

at a half-wavelength b(Du/D22)1/4. When Du = 0,

(9)

Under transverse loading Ny alone, there is a single half-wave in the x-direction and equation
(5) gives as the critical load

(10)

with m = 1. For a very long plate (a ~OO, A ~oo), n =1 also and the 'wide-plate' buckling load
then follows as

(11)

In considering biaxial loading, there are two ways in which the load may be envisaged to be
applied; the cases distinguished[l] are (a) that in which Ny is regarded as a constant preload, only
Nx being allowed to vary, and (b) that in which (Nx, Ny) maintain a constant ratio during loading.

If Ny, which by itself is insufficient to destabilise the plate, is considered as a preload defined
by

(12)

then (5) and (11) give, at buckling,

2

Nx = - P{D22(1- k)A 2+2(D12 +2D33)+DIIA -~,

putting n =1. If A is chosen to minimise this expression, the axial buckling load of a pre
loaded long plate is derived as

(13)

at a half-wavelength b{DII /D22(1- k)}1/4.
Alternatively, if biaxial load is applied with constant proportionality maintained between (Nx,

Ny), so that

equation (5) gives, at buckling,

2 2

Nx =- nb'lf. (1 + [A 2)-I{D22A2+2(D12 +2D33) +DIIA -2};

(14)

(15)

the functional dependence of this expression on the single parameter A (see equations (5), (7) and
(10» should be noted. It may be shown that the right-hand side of (15) has a minimum for a given
,\ only when

(16)
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For values of I satisfying (16), the buckling behaviour is qualitatively similar to that when I = O.
Fig. 1 illustrates this (curve labelled I = 0,15) for the particular plate detailed below; Nx may
be regarded as the applied load,and successive segments of the curve relating Nx to a again
correspond to m = 1,2,3, ... etc. For very long plates (a -+00, n = 1) the minimum value of (15)
gives the corresponding buckling load to be

at a half-wavelength

When I does not satisfy the inequality (16) the variation of buckling load is similar to that
illustrated in Fig. 1 (curve I = 0,31) where it is evident that no minimum exists. In this case, the
asymptotic value of (15) gives as the long-plate buckling load

(19)

2.2 Laterally restrained plates
It will next be shown that the foregoing analysis, of plates in which (Nx, Ny) remain

proportional during loading, applies also to laterally restrained plates. The in-plane pre-buckling
response is given by equation (1); under biaxial load, the strain Ey is thus given by

which, on integration, gives for the lateral displacement v,

(20)

This paper considers plates whose sides y = 0, b are subject to elastic restraint against lateral
displacement. The in-plane boundary conditions, which ensure that the transverse load Ny and
the lateral displacement are proportional, are

(y = O),}
(y = b).

(21)

The parameter t/J is chosen to determine the degree of lateral restraint; t/J = 0 corresponds to
laterally-free edges (Ny = 0) and t/J = 1 to infinitely rigid restraint (v = 0).

Since the plate, prior to buckling, is uniformly loaded it may be shown from (20) and (21) that
the condition of elastic lateral restraint is equivalent to requiring that (Nx, Ny) maintain a constant
ratio during loading, with

(22)

(see equation (14». If Nx is regarded to be the applied load, the load Ny derived from (14) and (22)
may be considered to be the transverse load induced by the lateral restraint via the Poisson's
ratio effect. Defining the two Poisson's ratios, V12 and V2h of the plate by

(23)

equation (22) gives

(24)
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for the rigidly restrained plate (!fJ = 1), the corresponding proportionality constant governing the
applied loads is 1= VZl. From equation (24), it thus appears that the parameter!fJ may be regarded
as a proportional reduction, due to elastic effects, of the full Poisson's ratio effect caused by
completely rigid lateral restraint. The buckling load of a laterally restrained plate can thus be
derived directly from the above analysis for biaxial loading (equations (14)-(19)) merely by
choosing the particular proportionality constant, !fJvzh given by equation (24). The presence of the
particular Poisson's ratio VZl in equation (24) should be noted; when lateral restraint is absent, it is
the other Poisson's ratio VIZ which governs the familiar ratio of lateral and longitudinal strains via
the relationship

3. BUCKLING OF BIAXIALLY LOADED AND RESTRAINED PLATES
The analysis of the present paper is general, but will be illustrated by reference to a

symmetrically laminated composite plate having eighteen equal~thickness plies of unidirectional
material. The elastic properties of a ply are

and the plies are arranged at angles

(30°, - 30°, - 30°, 90°, 30°, 30°, - 30°, 90°, 90°1 ~ymmetric about mid-plane)

to the x-axis. This lay-up has equal numbers of plies aligned in each of the directions (-30°,30°,
90°); the in-plane elastic properties of the plate are therefore isotropic, with

{
All = A 22 = A 12 +2A33 ,

VIZ = VZl = 0·31.

The plate elastic constants are of the form given in equation (1); in particular, no elastic coupling
exists between in-plane and out-of-plane effects, or between bending and twisting.

3.1 General behaviour
Under applied biaxial loading, the interaction at buckling between Nx and Ny, governed by

equation (5), will be qualitatively the same as that of isotropic plates[5]. Depending on the ranges
in which Nx and Ny fall, equation (5) will determine an interaction diagram consisting of a series
of linear segments corresponding to (m, n) = ... (1, 3), (1, 2), (1,1), (2,1), ... etc; Fig. 2 shows this
relationship between NJNx and NylNy for a plate with a = 6 and the elastic properties given
above.

In general, the (1, 1) segment (corresponding to AB in Fig. 2) will be governed by

2

Ny + a -zNx = - p{D22 +2(D1Z +2D33)a-z+ D11a-4
},

from equations (5) and (6); this segment will intersect the (2,1) segment (the point B in Fig. 2)
where

Z

Nx = - ;z{2(Dlz+2D33)+5Dll a-Z
},

and will intersect the (1, 2) segment where

2

Nx = p{4Dzza 2
- Dll a-2

}.

By considering the limiting form of these three expressions when a -,> oc some aspects of the
(Nx, Ny) interaction for a very long plate can be deduced. The (1, 1) segment has equation
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Fig. 2. Interaction at buckling between N. and Ny for a plate of aspect ratio 6.
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Fig. 3. Interaction at buckling between N. and Ny for an infinitely long plate.

Ny =N~ (see equation (11»; it intersects the (2, 1) segment where Nx =N~ (see equation (9»
whereas the intersection with the (1,2) segment corresponds to Nx -+00. The diagram relating
Nx /N~ and k = Ny /N~ for such a plate, again exemplified by the plate with elastic properties given
above, is shown in Fig. 3; the parabolic segment B'C' ofthe curve is represented by the right-hand
side of equation (13) when

(25)

equality corresponding to the point B' (Fig. 3). The linear segment A'B' corresponds to Ny = N~;

for values of Nx, corresponding to points on A'B', which do not satisfy the inequality (25) the
values of (Nx, Ny) at buckling do not interact, instability being caused by the action of Ny acting
alone. This is also the case for isotropic plates, and the existence of a non-interacting region of
(N., Ny) is therefore to be expected. The mode shape at buckling due to Ny alone is proportional
to sin (1Ty/b), and this does not vary in the x-direction; thus, for example, tensile values of N.
will not contribute in the Nx (a 2w/ax 2

) term on the right of equation (2), and the onset of
instability will not depend on Nx•

Fig. 3 also shows, for the particular plate considered, the linear segment aD', governed by
Ny = v2lNx, corresponding to completely rigid (t/J = 1) lateral restraint of the plate; since this
intersects A'B' rather than B'C', the corresponding rigidly-restrained plate buckling under axial
load Nx is caused instead by the induced transverse load Ny, with a buckling mode which does
not vary along the plate length.

It is not necessary to have completely rigid lateral restraint for this to occur. In general, if the
slope of the line corresponding to aD' (Fig. 3) exceeds that of OB', Le. if

(26)
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then buckling under axial load will be due solely to the induced transverse load; for the particular
example chosen, (26) corresponds to l/J ~0·73. The inequality (26) will in general be satisfied if
either of V21, the particular load N~ or the degree of lateral restraint l/J is sufficiel1tly large, or if the
transverse buckling load N~ is sufficiently small. Expressed in terms of the elastic constants, (26)
is equivalent to

(27)

from (9) and (11). Alternatively, for the particular case of a homogeneous plate in which the
elastic properties do not vary across the plate thickness, (Aij ) and (Dij ) are proportional and (27)
gives

(28)

3.2 Buckling of finite plates
By first considering a very long plate, in which there is no interaction between (Nx, Ny) over a

given range, it has. been possible to show that the induced transverse load is the cause of
instability in a restrained plate. For finite plates, the inequality (27) may be regarded as the
necessary condition for the possible occurrence of such a 'Poisson's-ratio' instability, provided
the plate is sufficiently long; the variation of axial buckling load with a for the particular plate
above having rigid lateral restraint (l/J = 1) is illustrated in Fig. 1 (curve corresponding to
I = V21 =0,31).

Fig. 3 represents the limiting form when a -+ 00 of an interaction diagram such as Fig. 2, the
parabolic arc B' C' being the limiting form of a sequence of segments, such as BC in Fig. 2, with
n =1 and m =2, 3, ... etc. Thus it is to be expected that buckling caused primarily by the
Poisson's ratio effect will be possible in finite plates, and that this instability will be associated
with an (m, n) = (1, 1) buckling mode represented by a linear segment such as AB (Fig. 2).
However, Nx and Ny will now couple, and buckling will be caused also partly by the action of
Nx ; a suitable criterion for buckling to remain 'due' to the lateral restraint is if, starting at a
restrained buckling load Nx ,

(i) complete removal of the axial load Nx , together with
(ii) associated increase of the induced transverse load by an amount 8 to become (1 +8)Ny, 8

being a suitably chosen arbitrary small quantity,
causes buckling.

This is next considered. When buckling of a restrained plate occurs under axial load N" the
induced transverse load is

2

Ny = - ;2l/JV21(l + l/JJl21a 2r l {D22a 2+2(D12 +2Dn)+Dna -2}, (29)

from (14), (15) and (24) with m = n = 1; the transverse load which, acting alone, would cause
buckling is

2

Ny = - pa-2 {D22a 2 +2(D12 +2D33) +Dlla-~, (30)

from (10). On the basis of the criterion stated above it follows that buckling may be regarded as
'caused' by the lateral restraint when (1 +8)Ny (Ny being given by (29» exceeds Ny; this occurs
if

(31)

Apart from the parameter 8, (31) depends only on l/J and Jl21; it may thus be seen that, however
small the chosen value of 8, (31) will always hold for plates which are sufficiently long.

For the elastic properties of the example chosen, the inequality (31) with l/J = I and 8 = 0·1
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gives a ;?II: 5·7. Poisson's-ratio buckling may thus be regarded as occurring in the plate (0: = 6)
illustrated in Fig. 2where it will be seen that the line OD, corresponding to l/J = 1and Ny = V21 Nxo
intersects the segment AB corresponding to (m, n) = 0, 1).

Occurrence of the restrained-plate buckling phenomenon described is not dependent on
unusually large values of the Poisson's ratio, such as those known to occur in laminated plates for
some types of layup; in the specific example chosen, the in-plane isotropy ensures a Poisson's
ratio (VI2 = V21 =0·31) typical of isotropic materials, the phenomenon occurring due to the
marked difference between the axial and transverse buckling loads (N~ == 4·43 N~, see the
inequality (26».

The foregoing analysis is developed on the assumption of loading in the x-direction and
restraint in the y-direction. For a plate loaded in the y-direction and restrained in the x-direction
a modified analysis could be derived in an obvious manner; alternatively, the analysis above
applies with the elastic properties 'rotated' through 90°, i.e. with (DlI , D22 , All, A22, V12, V21)

replaced by (D22 , Du , A22, Au, V21, V12) respectively.

4. HOMOGENEOUS ISOTROPIC PLATES
The analysis of this paper applies equally to homogeneous isotropic plates for which it is

merely necessary in the above analysis to make (AI) and (Di) proportional, with

Du = D22 == D12 +2D33 =D, }
V12 == V21 = V. (32)

From (27) and (32), buckling can only be caused in such a plate under rigid lateral restraint if
v ;?II: i, which implies unrealistic values of the elastic constants; partial lateral restraint (l/J < 1)
implies even higher v values. The axial buckling load of a restrained rectangular plate is given by

(33)

from (15) and (22); for the rigidly-restrained plate (l/J = 1) this agrees with the result given by
Przemieniecki [6].

5. CONCLUSIONS

The conclusions of this paper may be summarised as follows:

(i) Buckling of infinitely long laterally restrained orthotropic plates, of the type considered,
may be caused solely by the transverse load induced by the Poisson's ratio effect if the plate
elastic properties satisfy the inequality (27). (ii) In a finite plate, which is long enough for the
inequality (31) to be satisfied in addition to (27), buckling may be regarded as caused primarily by
this induced transverse load. (iii) Unusually large Poisson's ratio values are not necessary for this
phenomenon to occur; it can also follow from a disparity between the axial and transverse
buckling loads of the unrestrained plate. (iv) The phenomenon may occur for partial elastic
restraint, as well as for plates which are rigidly restrained laterally.
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